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Non-equilibrium Green function theory is formulated to meet the three main challenges of high bias
quantum device modeling: self-consistent charging, incoherent and inelastic scattering, and band
structure. The theory is written in a general localized orbital basis using the example of the zinc
blende lattice. A Dyson equation treatment of the open system boundaries results in a tunneling
formula with a generalized Fisher-Lee form for the transmission coefficient that treats injection from
emitter continuum states and emitter quasi-bound states on an equal footing. Scattering is then
included. Self-energies which include the effects of polar optical phonons, acoustic phonons, alloy
fluctuations, interface roughness, and ionized dopants are derived. Interface roughness is modeled as
a layer of alloy in which the cations of a given type cluster into islands. Two different treatments
of scattering; self-consistent Born and multiple sequential scattering are formulated, described, and
analyzed for numerical tractability. The relationship between the self-consistent Born and multiple
sequential scattering algorithms is described, and the convergence properties of the multiple
sequential scattering algorithm are numerically demonstrated by comparing with self-consistent
Born calculations. ©1997 American Institute of Physics.@S0021-8979~97!00411-8#
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I. INTRODUCTION

The design of resonant tunneling based quantum dev
requires accurate modeling of the quantum charge, reso
levels, and scattering effects in complicated and varied
tential profiles made possible by hetero-epitaxial based b
engineering. The modeling of such structures poses c
bined theoretical and numerical challenges. The two g
theoretical challenges are to include band-structure and s
tering effects. What makes the theory particularly challe
ing is that it must be formulated to be numerically tracta
for the simulation of realistic quantum devices. To ma
clear what we mean by a realistic device, we refer the rea
to Figs. ~1! and ~2! of Ref. 1. Because of the length of th
devices and the extreme thermalization combined with
quantum structure in the emitters, such devices canno
modeled well by the standard tunneling approaches2,3 or the
approaches for including scattering; see, for example, R
3–7 and citations therein.

The ability to model extended devices required a no
application of the theory developed by Caroliet al.8 for in-
cluding the effects of the contacts. We refer to our use of
theory as a generalized treatment of the open system bo
aries which is described briefly in Refs. 1 and 9–11 and
full detail in Sec. ~IV !. Our approach allows one to trea
large regions of the structure as emitter and collector re
voirs even when there are spatially varying potentials
these regions.Sec.~IV B ! incorporates the theory into a sta
dard coherent tunneling simulator2 making such a simulato
much more versatile. It provides a simple, tractable solut
to the problems considered by Frensley3 and Fiig and
Jauho.12 Numerical examples of the boundary conditio
used in single band calculations are given in Refs. 1, 11,
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13–16. In Refs. 14 and 17, the boundary conditions are u
in sp3s* calculations.

While our treatment of the contacts is useful wh
implemented as a coherent tunneling device simulator, it
comes crucial when we include scattering. The theory allo
us to partition a long structure into two large reservoirs an
short device. The computational and memory intensive c
culations required to include scattering are then perform
only within the short device region. This application was t
reason for developing the novel treatment of the boundar
Numerical examples of this application are given in Re
13–16 and in Sec.~VII !.

Screened polar optical phonon scattering, acoustic p
non scattering, alloy scattering, interface roughness sca
ing, and ionized dopant scattering are treated in Born-t
approximations. The self-consistent Born~SCB! approxima-
tion and the single-electron approximation within the se
consistent Born approximation are described in Sec.~V!. We
show in Secs.~V B! and ~V C! that for incoherent elastic
scattering or for inelastic scattering in the one electron
proximation, the self-consistent Born treatment leads to
infinite continued fraction expansion of the retarded Gre
function and a power series expansion ofG,. For reasons of
numerical tractability, we then consider finite order tre
ments of scattering.

We describe an approach based on a truncation of
self-consistent Born expansions which conserves curr
The truncation leads to a Green function version of a m
tiple sequential scattering~MSS! algorithm6 in Sec. ~VI !.
The first order truncation leads to expressions for the s
energy and current identical to ones written down by Rob
and Liou.6 The MSS approximation is not without its ow
drawbacks; it violates detailed balance in equilibrium, bu
consistently appears to give reasonable results for high-
simulations. We then describe both MSS and self-consis
78455/25/$10.00 © 1997 American Institute of Physics



om
o

h
in
r
c
io
de
ri
cie
d

o
ric
o
th
gh
lin

he
te
b
on
, r
s
A

n
th
ce
t
un
e
rg

A
s.

th
to

n

he

is,
s

e
-
d
ent

in
n

tro-

the

nd

tud-

nd

of

rbit

ne
a
at

ual
Born treatments of the elastic scattering mechanisms c
bined with first order treatments of the polar optical phon
scattering in Sec.~VI !.

Self-energy expressions for screened polar optical p
non scattering, acoustic phonon scattering, alloy scatter
interface roughness scattering, and ionized dopant scatte
are derived in Appendix A. We take a fresh look at interfa
roughness and model it as a layer of alloy in which the cat
species of a given type cluster into islands. The mo
smoothly approaches the usual alloy model as the cluste
becomes a homogeneous mixture of the two cation spe
This does not appear to be the case for most models foun
the literature, e.g., Ref. 7, except for the work of Tinget al.18

Interface roughness self energies are calculated for b
Gaussian and exponential autocorrelation models. Nume
examples comparing the different interface roughness m
els are given in Ref. 15. Numerical examples showing
effect of polar optical phonon scattering and interface rou
ness scattering on the valley current of a resonant tunne
diode ~RTD! are given in Refs. 14–16.

II. HAMILTONIAN AND BASIS

The general form of the Hamiltonian is shown in Eq.~1!
whereHo contains the kinetic energy and the effects of t
band structure, the applied potential, and the Hartree po
tial. The five terms to the right represent the potential felt
the electrons due to polar optical phonons, acoustic phon
interface roughness, alloy disorder, and ionized dopants
spectively. The underbrace andS indicate that these term
will be included through self-energies shown in Appendix

~1!
Ho is broken down into five terms,

~2!
which represent the Hamiltonian of the device, the left co
tact, the right contact, the coupling of the left contact to
device, and the coupling of the right contact to the devi
respectively. The under brace indicates that the effects of
contacts on the device will also be taken into acco
through a self-energy,SB. The self-energy treatment of th
scattering Hamiltonians is perturbative. The self-ene
treatment of the contacts is exact.

For zinc-blende compounds, a layer contains both
layer of cations and a layer of anions. An example is Ga
where the cations and anions are, respectively, Ga and A
vectorRL, pointing to a cation in layer L has az component
LD and a transverse componentRt

L whereD is the layer
spacing~half the width of the conventional cubic cell!. The
anions in the anion plane are shifted in position from
cations in the neighboring cation plane by the lattice vec
v5 D

2(111). A localized cation orbital at positionRL is
7846 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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uc,L,Rt
L&. An orbital of the corresponding anion at positio

RL1v is ua,L,Rt
L&. The indicesa andc run over the set of

orbitals~and, in the presence of spin orbit coupling, over t
spins!. For example, in thesp3 model there are 1s and 3
p orbitals neglecting spin. From the localized orbital bas
construct transversek states corresponding to Bloch sum
over the transverse plane.

uc,L,k&5
1

AN (
Rt
L
eik•Rt

L
uc,L,Rt

L&, ~3!

ua,L,k&5
1

AN (
Rt
L
eik•~Rt

L
1v!ua,L,Rt

L&. ~4!

Note thatk is, and will remain throughout the rest of th
article, a purelytransversewave vector. In our nomencla
ture, longitudinal represents the direction of current flow an
transverserepresents the direction perpendicular to curr
flow. The field operator in this basis is

c~r !5(
k,L

F(
c

^r uc,L,k&cc,L,k1(
a

^r ua,L,k&ca,L,kG ,
~5!

where ca,L,k is the destruction operator for an electron
state ua,L,k& and cc,L,k is the destruction operator for a
electron in stateuc,L,k&.

The matrix elements ofHo are, in general,

^a,L,kuHoua8,L8k&5Da,a8;L~k!dL,L8

2ta,L;a8,L8~k!dL8,L6 jÞ0 . ~6!

The diagonal block contains the orbital energies, the elec
static potential, and the anion-cation matrix elements.Ho of
Eq. ~2! is partitioned such that layers 1,. . . ,N spanHo

D and
correspond to the device, layers2`, . . . ,0 spanHo

L , and
layersN11, . . . ,̀ spanHo

R . We will refer toblock matrix
notation in which the orbital indices are suppressed and
elements such astL,L8 arem3m matrices wherem is the
number of orbitals~anion plus cation!. We will also refer to
full matrix notation in which all indices are suppressed a
matrices are the size ofHo

D .
There are two special cases that have been heavily s

ied, the tight-binding single-band4,6 and sp3s* models.19,20

In the sp3s* model with transport in the~100! direction, a
cation orbital only has matrix elements between itself a
other anion orbitals~and vice versa for an anion orbital!.
Ho is block tri-diagonal with the blocks being half the size
the layer basis, i.e., 535 instead of 10310. The diagonal
blocks are themselves diagonal in the absence of spin o
coupling.21

In the single-band tight-binding model, there is only o
orbital per layer~the anion and cation are lumped into
single orbital!. The layer uniquely specifies the orbital so th
all orbital indices can be dropped from Eqs.~3–6! and any
term containing anion indices in Eqs.~3–5! is discarded. The
single-band tight-binding matrix elements ofHo are related
to the discretized effective mass Hamiltonian in the us
way.22 The effective mass Hamiltonian is
Lake et al.
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Ho5
2\2

2

d

dz

1

m* ~z!

d

dz
1Vk~z!1

\2k2

2mL*
, ~7!

wheremL* is the effective mass in the left lead and

Vk~z!5V~z!1
\2k2

2mL*
S mL*

m* ~z!
21D . ~8!

Note that the spatial dependence of the transverse energ
been transferred into a transverse momentum dependen
tential, and that we have assumed a parabolic~instead of
cosine! transverse dispersion.

The tight-binding parameters in Eq.~6! corresponding to
the finite difference form of Eq.~7! are

t i , j5
\2

~mi1mj !D
2 , ~9!

Di~k!5
\2

2D2S 1

m2 1
1

m1D1Vi~k!, ~10!

m25
mi211mi

2
and m15

mi1mi11

2
, ~11!

where in Eqs.~9–11! mi is the effective mass at mesh si
‘‘i’’, Vi(k) is the potential at site ‘‘i’’ due to conduction
band offsets, the applied potential, the Hartree potential
the transverse momentum dependent part ofVk(z), andD is
the mesh spacing.

III. NON-EQUILIBRIUM GREEN FUNCTIONS

A. Definitions

The non-equilibrium Green function formalism provid
a method for calculating the non-equilibrium statistical e
semble average of the single particle correlation operato

Ga,L;a8,L8
,

~k;t,t8!5
i

\
^ca8,L8,k

†
~ t8!ca,L,k~ t !&

Ga,L;a8,L8
.

~k;t,t8!5
2 i

\
^ca,L,k~ t !ca8,L8,k

†
~ t8!&

Ga,L;a8,L8
R

~k;t,t8!5Q~ t2t8!@Ga,L;a8,L8
.

~k;t,t8!

2Ga,L;a8,L8
,

~k;t,t8!#

52 iQ~ t2t8!Aa,L;a8,L8~k;t,t8!

Ga,L;a8,L8
A

~k;t,t8!5Q~ t82t !@Ga,L;a8,L8
,

~k;t,t8!

2Ga,L;a8,L8
.

~k;t,t8!#

Aa,L;a8,L8~k;t,t8!5 i @Ga,L;a8,L8
.

~k;t,t8!

2Ga,L;a8,L8
,

~k;t,t8!#

5 i @Ga,L;a8,L8
R

~k;t,t8!

2Ga,L;a8,L8
A

~k;t,t8!#, ~12!

where the indicesa anda8 include both the anion and catio
orbitals.
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We are concerned with steady state, so we Fourier tra
form the time difference coordinate, (t2t8), to energy in
Eqs. ~12! and work with, for example, the quantit
Ga,L;a8,L8

, (k;E)5*d(t2t8)eiE(t2t8)/\Ga,L;a8,L8
, (k;t2t8).

Several useful relationships that apply to the Four
transformed quantities are~in full matrix notation!

GA5@GR#†, ~13!

A5 i @GR2GA#5A†. ~14!

Fourier transforming the definition ofGR in Eq. ~12! results
in

GR~k,E!5PE dE8

2p

A~k;E8!

E2E8
2

i

2
A~k;E!. ~15!

The relationships between the various self-energies
we will discuss are identical to the relationships between
various Green functions. A few that we will use are

G~k;E!5 i @S.~k;E!2S,~k;E!#

5 i @SR~k;E!2SA~k;E!# ~16!

and

SR~k,E!5PE dE8

2p

G~k;E8!

E2E8
2

i

2
G~k;E!. ~17!

B. Electron density and current

Once the correlation functionG, is known, it immedi-
ately provides the electron density,

nL5
22i

AD (
k
E dE

2p (
a

Ga,L;a,L
, ~k,E!

5
22i

AD (
k
E dE

2p
tr$GL;L

, ~k,E!% ~18!

and the current density,

JL5
2e

\A (
k
E dE

2p (
a,a8

(
L1<L

(
L2.L

@ ta,L1 ;a8,L2

3Ga8,L2 ;a,L1
,

~k,E!2ta,L2 ;a8,L1Ga8,L1 ;a,L2
,

~k,E!#

5
2e

\A (
k
E dE

2p (
L1<L

(
L2.L

2Re$tr@ tL1 ;L2GL2 ;L1
, ~k,E!#%

~19!

throughout the device.JL is the current crossing the plan
between layerL andL11. In Eqs.~18! and ~19!, A is the
cross sectional area, ande is the electron charge. The facto
of 2 are for spin degeneracy. In the absence of spin deg
eracy, the trace is also taken over spins. In the second lin
Eqs. ~18! and ~19!, we use block matrix notation fort and
G, and tr$•••% indicates a trace over the orbital indices.
the nearest neighbor tight-binding models,

JL5
2e

\A (
k
E dE

2p
2Re$tr@ tL;L11GL11;L

, ~k,E!#%. ~20!
7847Lake et al.
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One should keep in mind that the goal of all of the differe
approaches that we discuss in the following sections is
calculation of Eqs.~18! and ~19!.

IV. SINGLE ELECTRON TUNNELING THEORY

A. Generalized open system boundary conditions

In this section, we describe how to partition the dev
such that large regions, even where there are spatially v
ing potentials, can be treated as reservoirs. We have fo
this development to be the single most important and us
feature of the theory presented in this article. The approac
based on the Dyson equation treatment of the contacts de
oped by Caroliet al.8 and subsequently used by a number
authors.19,23–28

The novelty of our approach is twofold. The first is th
manner in which we apply the theory. All previous applic
tions of the theory injected carriers only from the flatba
regions of the contacts. See, for example, appendix B
Fig. ~4! of Ref. 19. In contrast, we use the theory to tre
large regions of the structure, even where there are spat
varying potentials, as reserviors. Thus, we are capable
injecting electrons into the device from mixed, no
asymptotic states in the emitter~see Figs.~1! and~2! of Ref.
1!. This is in contrast to standard scattering theory, and
the reason that the problem of injection from emitter qua
bound states was never properly formulated without t
theory.12 Our approach is also the key which allows us
include scattering in long devices.

The second novelty is our small but essential modifi
tion of the original theory to include an imaginary potent
in the contacts. This potential plays the role of the imagin
part of the retarded self-energy in the contacts resulting fr
scattering. For injection into the device from plane-wa
states, the effect of the imaginary potential is small. For
jection from emitter states that lie below the continuum
the left ~see Fig.~1!!, the imaginary potential is crucial. Thi
is discussed and illustrated numerically in Ref. 11.

FIG. 1. The structure is partitioned into two large reservoirs and a s
device. The self-energySRB accounts for loss from the device to the co
tacts. The self-energyS, accounts for injection from the contacts to th
device.
7848 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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The theory is illustrated by Fig.~1!. The effect of the left
and right regions are collapsed into the self energiesSRB and
S,B. SRB accounts for the spectrum shift and loss in t
device resulting from the coupling of the device to the co
tacts.S,B accounts for the inscattering from the contacts
the device.

For completeness, we derive the expressions for
boundary self-energies below. We first include exactly
effects of the contacts on the device using Dyson’s equat
then, in the following sections, we include the effects
scattering in the device. We consider Dyson’s equation
G, since it will give us the self-energies which account f
both the dynamics and the kinetics of the leads. To av
excessive subscripts and summations, we derive the e
tions for the nearest neighbor tight-binding model, and, at
end, write down the answers for the general multi-neigh
coupling models. Unless stated otherwise, block matrix
tation will be used throughout. All subscripts refer to lay
indices. We calculateG, in the device by including the cou
pling of the contacts to the device,t0,1, t1,0, tN,N11, and
tN11,N , exactly using Dyson’s equation. The derivation f
G. is identical and obtained by replacing the supersc
, with . and the Fermi factorsf e(c) with 12 f e(c) in the
following equations. For any two layersi , j P $1, . . . ,N% in
the device, the Dyson equation forGi , j

, (k,E) is ~cf. Eq.
~2.25! of Langreth29!

Gi , j
, 5gi , j

, 1gi ,1
R ~2t1,0!G0,j

, 1gi ,1
, ~2t1,0!G0,j

A

1gi ,N
R ~2tN,N11!GN11,j

, 1gi ,N
, ~2tN,N11!GN11,j

A , ~21!

where the arguments (k,E) have been suppressed. In E
~21!, the lower caseg’s are calculated with the device
contact couplings,t0,1, t1,0, tN,N11, and tN11,N set to zero,
and the upper caseG’s are exact. The middle term of Lan
greth’s Eq.~2.25! is zero since thet ’s are local in time~see
Appendix of Caroliet al.8!. The full Green functions which
cross the device-contact boundaries,G0,j

, , GN11,j
, , G0,j

A , and
GN11,j
A are obtained by writing a second Dyson equation,

G0,j
, 5g0,0

R ~2t0,1!G1,j
, 1g0,0

, ~2t0,1!G1,j
A

GN11,j
, 5gN11,N11

R ~2tN11,N!GN, j
,

1gN11,N11
, ~2tN11,N!GN, j

A ~22!

and

G0,j
A 5g0,0

A ~2t0,1!G1,j
A

GN11,j
A 5gN11,N11

A ~2tN11,N!GN, j
A . ~23!

Substituting Eqs.~22! and ~23! into Eq. ~21! results in

rt
Lake et al.
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From Eq.~24!, we read off the boundary self-energies whi
take into account the effect of the semi-infinite left and rig
contacts on the device.

S1,1
RB5t1,0g0,0

R t0,1

SN,N
RB 5tN,N11gN11,N11

R tN11,N

S1,1
AB5t1,0g0,0

A t0,1

SN,N
AB 5tN,N11gN11,N11

A tN11,N ~25!

and

S1,1
,B5t1,0g0,0

, t0,1

SN,N
,B 5tN,N11gN11,N11

, tN11,N . ~26!

Since the contacts are by definition in equilibrium,

g0,0
, 5 i f e a0,0

gN11,N11
, 5 i f caN11,N11 , ~27!

wherea5 i (gR2gA) is the spectral function andf e(c) is the
Fermi factor of the emitter~collector! contact. DefiningGB

as

G1,1
B 5 i ~S1,1

RB2S1,1
AB!5t1,0a0,0t0,1

GN,N
B 5 i ~SN,N

RB 2SN,N
AB !5tN,N11aN11,N11tN11,N ~28!

we obtain the final form forS,B.

S1,1
,B5 i f eG1,1

B

SN,N
,B 5 i f cGN11,N11

B . ~29!

In the nearest neighbor tight-binding model, all of the boun
ary self-energies are zero for layers$ i , j % Þ $1,1% or $N,N%.
While the self-energiesSRB andGB are valid in general, the
self-energyS,B, Eq. ~29!, is valid only if the reservoir re-
gions are well equilibrated with the n1 contacts~see Fig.
~1!!.

To obtain the equation of motion forGi , j
, for i , j

P $1, . . . ,N%, we operate on Eq.~24! from the left with
(E2Ho

D) using (E2Ho
D)gR51 and (E2Ho

D)g,50 to ob-
tain ~in full matrix notation!

~E2Ho
D2SRB!G,5S,BGA, ~30!
J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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-

where (E2Ho
D) is an N3N block tridiagonal matrix and

SRB andS,B areN3N block matrices with two non-zero
blocks, one in the upper left corner and one in the lower ri
corner.

The matrix on the left ofG, is GR21
, so from Eq.~30!

we also get the equation of motion for the retarded Gre
function in the device~in full matrix notation!,

~E2Ho
D2SRB!GR51 ~31!

Derivations ofSRB using the more commonly known Dyso
equation forGR can be found in Refs. 10 and 30.

An explicit representation of the retarded Green funct
for any layer$ i , j % P $1, . . . ,N% is thus~for N53),

@GR#5F E2D12S1,1
RB t1,2 0

t1,2 E2D2 t2,3

0 t3,2 E2D32S3,3
RB
G 21

.

~32!

In general, the contact regions will be regions with spatia
varying potentials where it is appropriate to approximate
occupation factor with an equilibrium Fermi-Dirac facto
An example is the lightly doped emitter lead and resulti
emitter quasi-bound state of a resonant tunneling diod31

This region can be 200 nm long. If a lattice spacing
2.83 Å is used, 700 nodes would be required for this regi
By including its effect through a self-energy, the size,N, of
the matrix,H0

D , is reduced by 700. Once we include scatt
ing, computation time scales asN2 for local interactions and
N3 for non-local interactions, this reduction therefore b
comes essential.

To calculate the self-energiesS1,1
RB andS3,3

RB in Eq. ~32!,
we needg0,0

R and g4,4
R . Taking, for example, a left contac

consisting of three layers with indicesj5$22,21,0% and
assuming that the potential at layers$23, . . . ,2`% is iden-
tical to that at layer22, g0,0

R is found from

g0,0
R 5F E2D222S22,22

RB t22,21 0

t21,22 E2D21 t21,0

0 t0,21 E2D0

G
0,0

21

,

~33!

where

S22,22
RB 5t22,23g23,23

R t23,22 ~34!

andg23,23
R is the surface Green function of the semi-infini

bulk terminated at layer23, i.e., the semi-infinite bulk con
sisting of layers$2`•••23%. For nearest neighbor tight
binding models the surface Green function is30

g23,23
R 5@E2D231t24,23xZx21#21 ~35!

and the boundary self energy is

S22,22
RB 52t23,22xZx21, ~36!

whereZ is the diagonal matrix of propagation factors a
x is the matrix of Bloch states propagating toward the d
vice.

For the single-band model, thet ’s are real scalars which
we denote aste in the left lead so that
7849Lake et al.
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g23,23
R 52eigeD/te ~37!

and

S22,22
RB 52te e

igeD, ~38!

wherege is the longitudinal wave vector in the emitter co
tact. Using the single-band dispersion relation

E5D2222te cos~ge D! ~39!

the upper left corner element of the matrix in Eq.~33! be-
comes2te e

2 igeD.
True bound states may be present in the spectrum

g0,0
R andgN11,N11

R occurring in Eqs.~25–29! since the matrix
elementst0,1 and tN,N11 are set to zero~see Eq.~33!!. To
give a realistic energy width to these states, an energy
pendent optical potential,ih, is added to the diagonal ele
ments ofDi in the leads in matrix~33!. The optical potential
is given an exponential decay for energies below the cond
tion band edge to avoid unrealistic band tails. Physically,
optical potential represents the scattering induced broa
ing; if an emitter quasi-bound state is to act as a reservo
must be coupled to the continuum of states to the left thro
inelastic channels, and the coupling to the continuum m
be greater than the coupling to the states to the right thro
the emitter barrier. The optical potential is an approximat
for the imaginary part of the retarded self-energy result
from scattering in the reservoirs. The optical potential is n
zero only in the reservoirs and zero in the device. Theref
in the device, where current is calculated, current is c
served.

In general, for arbitrary neighbor coupling,

SeL,L8

RB 5 (
L1<0

(
L2<0

tL,L1gL1 ,L2
R tL2 ,L8, ~40!

ScL,L8

RB 5 (
L1>N11

(
L2>N11

tL,L1gL1 ,L2
R tL2 ,L8, ~41!

where we have used block matrix notation. The subscr
e andc label the self-energies resulting from coupling to t
emitter and collector contacts, respectively. The numbe
terms in the sums is determined by the number of non-z
off-diagonal block matrix elements inHo . The termgL1 ,L2

R is

calculated with all matrix elements coupling the lead to
device set to zero.GB resulting from coupling to the~left/
right! contact is defined as

GB~e/c!5 i @S~e/c!
RB 2@S~e/c!

RB #†#. ~42!

S,B resulting from coupling to the~emitter/collector! con-
tact is given by

S~e/c!
,B 5 i f ~e/c!G

B~e/c!. ~43!

The central equations of this section are the express
for the self-energies which account for both the dynam
Eqs. ~25!, ~28!, ~40!, ~41!, and ~42!, and the kinetics, Eqs
~29! and~43!, of the contacts and the equations of motion
G,, Eq. ~30!, andGR, Eq. ~31!.
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B. Current

1. Tunneling formula

Starting with the expression forJ0, Eq. ~19!, using Dys-
on’s equation forGe,d

, , which crosses the device emitte
contact boundary where the subscripte indicates a layer in
the emitter contact~to the left! and the subscriptd indicates
a layer in the device~in block matrix notation!,

Ge,d
, 5 (

e8,d8
@ge,e8

R
~2te8,d8!Gd8,d

,
1ge,e8

,
~2te8,d8!Gd8,d

A
# ~44!

and the fact thatGd,e
, 52@Ge,d

, #†, we can rewrite the curren
Eq. ~19! to obtain Eq.~5! of Meir and Wingreen,27

J05
2e

\A (
k
E dE

2p (
L51

N

(
L851

N

tr$GL,L8
Be

@ f eAL8,L1 iGL8,L
,

#%.

~45!

As they noted, Eq.~45! is valid even when scattering pro
cesses and many-body interactions are present in the de
With no scattering in the device, Eq.~45! can be re-written
as a generalized Fisher-Lee tunneling formula.32 Using the
relations~in full matrix notation!,

G,5GRS,BGA ~46!

and

A5GRGBGA, ~47!

Eq. ~45! becomes

J5
2e

\A (
k
E dE

2p (
L151

N

(
L2

51

N

(
L351

N

(
L451

N

3tr$GL1 ,L2
Be GL2 ,L3

R GL3 ,L4
BR GL4 ,L1

A %~ f e2 f c!. ~48!

For the single-band model, Eq.~48! becomes

J5
2e

\A (
k
E dE

2p
G1,1
BeGN,N

Bc uG1,N
R u2~ f e2 f c!. ~49!

Defining Tr$•••% as being the trace over all device state
Eq. ~48! can be written as

J5
2e

\A (
k
E dE

2p
Tr$GBeGRGBcGA%~ f e2 f c!, ~50!

where we are using full matrix notation exactly as written
Meir and Wingreen.27 The difference is that ourG ’s contain
the effects of band bending and quantized states in the le
Eq. ~50! is the tunneling formula with a generalized Fishe
Lee form of the transmission coefficient.32 For the first time,
current flowing from continuum states and current flowi
from emitter quasi-bound states is treated on an equal foo
in a Tsu-Esaki-type tunneling33 formula.12

2. A numerically more efficient tunneling formula

Although Eq.~50! is formally pleasing, it is numerically
inefficient since it requires the calculation of the far o
diagonal elements ofGR. The most efficient formulation
would require only the corner diagonal elements ofGR. We
can rewrite Eq.~50! to satisfy this requirement. Using th
expression forA ~in full matrix notation!
Lake et al.
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A5GRGBeGA1GRGBcGA ~51!

the transmission probability in Eq.~50! can be written as

T~k,E!5Tr$GBe@A2GRGBeGA#%. ~52!

Since, in Eq.~52! the Green functions only couple toGBL ,
only the left corner elements are needed. As an example
nearest neighbor tight binding~in block matrix notation!,

JL5
2e

\A (
k
E dE

2p
tr$G1,1

Be@A1,12G1,1
R G1,1

BeG1,1
A #%~ f e2 f c! ~53!

only the first diagonal block is needed (A1,1 is obtained from
Eq. ~14!!. For a typical recursive Green function algorithm
Eq. ~53! can be twice as fast as Eq.~48!.

C. Electron density

The approach just described to speed up the current
culation can also be used to speed up the calculation of
electron density when no scattering is present in the dev
To calculate the electron density from Eq.~18!, we need

2 iGL,L
, 5 (

L1 ,L2
@ f e GL,L1

R GL1 ,L2
Be GL2 ,L

A

1 f cGL,L1
R GL1 ,L2

Bc GL2 ,L
A # . ~54!

For the simplest case of nearest neighbor tight binding,
~54! requires both the left and right block columns ofGR.
We can rewrite Eq.~54! so that only the block diagona
elements and leftor right block columns are needed. In th
recursive Green function algorithm, this change can red
the calculations by a factor of 2.

To aquire the left block columns, we define

AL,L
L 5 (

L1 ,L2
GL,L1
R GL1 ,L2

Be GL2 ,L
A . ~55!

Eq. ~54! then becomes

2 iGL,L
, 5 f eAL,L

L 1 f c@AL,L2AL,L
L #. ~56!

Eq. ~56! requires only the block diagonal elements ofGR and
the elements which couple to the left contact throughGBe.
As an example, for nearest neighbor tight binding,

AL,L
L 5GL,1

R G1,1
BeG1,L

A . ~57!

In this example, only the diagonal blocks and the left blo
column ofGR are needed.

Once the device is under sufficiently high bias such t
at higher energiesf R can be neglected, one only needs t
left column ofGR. This can be obtained from one swee
from right to left across the device with the recursive Gre
function algorithm, Eq.~59!, followed by a walk down the
left column.

Since the contacts are in equilibrium, we calcula
GL,L

, in the contacts using the equilibrium relation

2 iGL,L
, 5 fAL,L , ~58!

wheref is the Fermi factor of the contact andGR is the exact
Green function of theconnectedlead. Therefore, in the con
tacts, we need to calculate the diagonal elements ofGR. The
J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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recursive Green function algorithm described in the n
subsection provides an extremely efficient means for obt
ing all of the information necessary for calculating the ele
tron density and the current.

D. Recursive Green function algorithm

The recursive Green function algorithm is most power
for the nearest neighbor tight-binding model. We will lim
our discussion to that example in this section. For n
nearest-neighbor models, one can use all of the equation
stated by simply doubling the block size.

In the following derivation, all upper caseG’s and lower
caseg’s are retarded Green functions and hence we will d
the superscriptR. Upper caseG’s are reserved for the exac
Green function elements. The termgL,L

l indicates that the
Green function takes into account everything exactly on
left with the coupling elements immediately on the righ
tL,L11 and tL11,L , set to zero. The termgL,L

r indicates that
the Green function takes into account everything on the ri
exactly with the coupling elements immediately to the le
tL,L21 and tL21,L , set to zero.

To calculate the electron density, we need the diago
and left block column ofGR for Eqs.~56! and~57!. We start
with the expression forgr in the flatband lead, see Eq.~35!,
and, using the expression for the open system boundary
energy, Eq.~25!, walk from right to left across the devic
creatinggL,L

r :

gL,L
r 5@E2DL2tL,L11gL11,L11

r tL11,L#21. ~59!

At the left end of the left lead~say layer 0), we haveg0,0
l

from Eq. ~35! and we create the exact diagonal blo
G1,1
R from

G1,15@E2D12t1,0g0,0
l t0,12t1,2g2,2

r t2,1#
21. ~60!

If we only needed the current, Eq.~53!, we would stop here.
With G1,1, we march back across the device creatingGL,L

using

GL,L5gL,L
r 1gL,L

r tL,L21GL21,L21tL21,LgL,L
r , ~61!

which is derived by combining the Dyson equation f
GL,L ,

GL,L5gL,L
r 1gL,L

r ~2tL,L21!GL21,L , ~62!

with the alternate form of the Dyson equation forGL21,L ,

GL21,L5GL21,L21~2tL21,L!gL,L
r . ~63!

Finally, we walk down the left column creatingGL,1 using

GL,15gL,L
r ~2tL,L21!GL21,1. ~64!

V. SELF-CONSISTENT BORN EQUATIONS OF
MOTION AND SOLUTION

In the previous section, we used Dyson’s equation
include exactly the effect of the contact Hamiltonians in E
~2!. We now use perturbation theory to include appro
mately the effects of the scattering potentials in Eq.~1!. The
derivation of the self-energies in a self-consistent Born
proximation is given in Sec.~A!.
7851Lake et al.
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The equations of motion forGR andG, which include
the effects of incoherent scattering are~in full matrix nota-
tion!

~E2Ho2SR2SRB!GR51 ~65!

and

~E2Ho2SR2SRB!G,5~S,1S,B!GA, ~66!

where SR5Spop
R 1Sap

R1S ir
R1Sal

R1S id
R and S,5Spop

, 1Sap
,

1S ir
,1Sal

,1S id
, are the sum of the individual scatterin

self-energies for each type of scattering process: polar op
phonon, acoustic phonon, alloy disorder, interface rou
ness, and ionized dopant.SRB andS,B are the open system
boundary self-energies. If we multiply Eq.~66! byGR on the
left, we obtain Eq.~17! of Caroli et al.34

We note that in the self-consistent Born approximat
and, also, for the single-electron approximation within t
self-consistent Born approximation that we discuss in S
~V C!, current is conserved. ForG, calculated from Eq.
~66!, the divergence of the current is

JL2JL215
2e

\A (
k
E dE

2p
tr@SRG,1S,GA2GRS,

2G,SA#50, ~67!

where the notationSG⇒(L8SL,L8GL8,L .

A. Retarded self-energy, SR

The retarded self-energy,SR, is related toS, andS.

by Eq. ~17!. For the elastic self-energies due to acous
phonons in the high temperature approximation, alloy sc
tering, interface roughness, and ionized dopants, the reta
self-energies are obtained from the expressions forS, in
Eqs. ~A13!, ~A23!, ~A29!, and ~A40! in Appendix A, by
simply replacingG, with GR. We illustrate this with the
example of acoustic phonon scattering~in full matrix nota-
tion!.

G~E!5 i ~S.~E!2S,~E!!

5DapE d2k

4p2 i ~G
.~k,E!2G,~k,E!!

5DapE d2k

4p2A~k,E!. ~68!

In Eq. ~68!, Dap contains all of the prefactor terms in Eq
~A13!. Substituting the expression forG(E) into Eq. ~17!
and using Eq.~15!, we obtain

SR~E!5DapE d2k

4p2G
R~k,E!. ~69!

We note that since the total scattering rateG depends
solely on the total number of states,A, and not their occupa
tion, Pauli exclusion plays no role in incoherent elastic sc
7852 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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tering. Therefore, for incoherent elastic processes, sin
electron theory35 and non-equilibrium Green function theor
are identical.

For the inelastic self-energy resulting from polar optic
phonons, there is no simple relationship such as Eq.~69! by
which one can calculateSR from GR. SR andG do depend
on the occupation statistics which are contained inG, and
G.. To calculateSR for polar optical phonons, one is force
to perform the principal value integral in Eq.~17! numeri-
cally. That is a daunting task that we wish to avoid. In S
~V C!, we discuss how to approximate the principal val
integral analytically.

B. Elastic scattering

First, we discuss the solution of Eqs.~65! and ~66! if
only elastic scattering mechanisms are present so
SR5Sap

R1S ir
R1Sal

R1S id
R andS,5Sap

,1S ir
,1Sal

,1S id
R . For

only elastic self-energies, the two Eqs.~65! and ~66! de-
couple. First, we perform a self-consistent solution forGR

and SR. Then we self-consistently solve forG, and S,.
Furthermore, and perhaps more importantly, each total
ergy decouples from the others, so that we perform the c
plete self-consistent calculations one energy at a time
then move on to the next energy. The energy decoup
reduces memory requirements.

The self-consistent solutionGR andSR generates a con
tinued fraction expansion which converges very fast. T
self-consistent solution ofG, and S, generates a powe
series expansion which converges very slowly. All of t
elastic self-energies, Eqs.~A13!, ~A23!, ~A29!, and ~A40!
have the form

SR5D^GR ~70!

and

S,5D^G,, ~71!

whereD contains the matrix element squared of the scat
ing potential and^ indicates convolution over transvers
momentum and matrix manipulation of the orbital indic
~see, for example, Eq.~A23!!. Substituting Eq.~70! into Eq.
~65! and expanding, we get the continued fraction expans

GR5~E2Ho2SRB2D^ ~E2Ho2SRB2D

^ ~E2Ho2SRB2D^ ••• !21!21!21. ~72!

To demonstrate the power series expansion of Eq.~66!
we first multiply through on the left byGR to rewrite it as

G,5GRS,GA1GRS,BGA. ~73!

The second term on the right is a source term due to injec
from the contacts. We denote it asS5GRS,BGA. To make
the result most transparent, we write the following equatio
for G, using the single-band model for diagonal se
energies. Then, the block matrices are scalars, the ord
not important, and the factors ofGR andGA can be com-
Lake et al.
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bined into uGRu2. We denote the diagonal elements ofG,

andS with a single subscript asGL
, andSL . With this no-

tation, Eq.~73! becomes

GL
,~k!5(

L8
uGL,L8

R
~k!u2(

k8
DL8~k,k8!GL8

,
~k8!1SL~k!,

~74!

where we have explicitly written out the convolution ov
transverse momentum in Eq.~71!. Suppressing the layer in
dices and iterating, Eq.~74! becomes

G,5S1uGRu2D^S1uGRu2D^ @ uGRu2D^S#1•••

~75!

Note that the form of Eq.~75! has a physical interpretation
The electron density at layerL is composed of multiple con
tributions. The first term,S, represents flux injected directl
from the contacts. The next term,uGRu2D^S, represents the
contribution from flux injected from the contacts that sc
tered at various layersL8 and then propagated from laye
L8 to layerL according touGL,L8

R u2. The third term represent
the contribution from flux that scattered twice in getting fro
the contact to layerL and so on. We can formally write dow
the solution to Eqs.~74! and ~75! as

G,5@12uGRu2D#21S. ~76!

For NL layers andNk transverse momenta,G, and S are
vectors of length NLNk and @12uGRu2D#21 is a
(NLNk)3(NLNk) full matrix. Typical numbers that we us
in single-band simulations areNL550 andNk5200 resulting
in a full matrix with 108 elements which is too large to allow
a direct solution. The method that we have used to so
Eq. ~74! is Jacobi iteration combined with successive ov
relaxation~SOR!.

C. Inelastic (polar optical phonon) scattering

With polar optical phonon scattering, the self-consist
solutions of Eqs.~65! and ~66! combined with the self-
energy expressions~A9!, ~A10!, ~16!, and ~17! are fully
coupled. Worse yet, all energies are coupled through
principal value integral in the calculation ofSR, Eq. ~17!.
Furthermore, the self-energies are non-local, fullNL3NL

matrices in a single band model. Thus, a self-consis
solution requires the storage of four double-compl
four-dimensional functions, GL,L8

R (k,E), GL,L8
, (k,E),

SL,L8
R (k,E), andSL,L8

, (k,E). For our typical energy grid size
of NE5150 in a single band calculation withNL andNk as
above, 4.2 GB of memory are required. For this reason,
have developed a number of different approximations to t
the polar optical phonon self energy. The remainder of
article discusses various approximate methods for calcu
ing the self-energies.
J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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First, we use the single-electron or low-density appro
mation to calculate the polar optical phonon retarded s
energy,SR. In the calculation ofG in Eq. ~16!, S, is set to
zero andS. is calculated from Eq.~A7! replacingG. with
2 iA. This approximation is valid for low electron densitie
when the electron density per unit energy is much less t
the density of states. This condition is valid for low dopin
high temperatures, or for devices under bias when charg
is negligible. The last two conditions apply to symmetr
room temperature RTDs.G is now of the form

G5Dpop
.

^A, ~77!

whereDpop
. } nBd(E1v)1(nB11)d(E2v) contains the

matrix element squared ofHep, nB is the Bose-Einstein fac
tor, v is the polar optical phonon energy, and̂now repre-
sents convolution over both transverse momentum and t
energy. Using thisG in Eq. ~17! to calculateSR results in

SR5Dpop
.

^GR. ~78!

In other words, the retarded self-energy is now obtained fr
Eq. ~A7! replacingG. with GR.

In this approximation, the non-equilibrium Green fun
tion theory no longer accounts for Pauli blocking and it b
comes equivalent to a single electron theory.36,35 There are
two large benefits. The first is that the principal value in
gral in Eq.~17! is performed analytically. The second is th
the coupling between the equations forGR andG, is re-
moved allowing them to be solved independently as d
cussed for the case of elastic scattering in Sec.~V B!. Since
onlyGR is needed to obtainSR, the self-consistent equation
for GR andSR form a closed loop independent of the equ
tion for G, andS,.

The method of solution is similar to that described f
the case of elastic scattering in Sec.~V B! except that
Nv5(Emax2Emin)/v total energies are coupled whereEmax

and Emin are the maximum and minimum energies of t
total energy grid~we are assuming dispersionless polar op
cal phonons!. The solution ofGR andSR can still be cast as
a continued fraction expansion, Eq.~72!, except noŵ rep-
resents convolution over both transverse momentum and
tal energy andD } nBd(E1v)1(nB11)d(E2v). In the
self-consistent solution ofGR andSR, we need to store two
double-complex four-dimensional functionsGL,L8

R (k,E) and
SL,L8
R (k,E). For the single band model, the functions are

size NL
23Nk3Nv which, for our typical numbers of

NL550,Nk5200, andNv513, results in a memory require
ment of 104 MB.

Once a solution ofGR at theNv energies is obtained
GL,L8
R (k,E) is stored and used in the self-consistent solut

of G, andS, at that same set ofNv energies. The equation
for G, has the same form as before~cf. Eq. ~74!!,
GL,L8
,

~k,E!5SL,L8~k,E!1 (
L1 ,L2

GL,L1
R ~k!(

k8
DL1 ,L2

, ~k,k8!@nBGL1 ,L2
, ~k8,E2v!1~nB11!GL1 ,L2

, ~k8,E1v!#GL2 ,L8
A

~k,E!,

~79!
7853Lake et al.
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except that now the self-energy is non-local and coup
GL,L8

, (k,E) to GL,L8
, (k,E6v). After a self-consistent solu

tion for G, is obtained for one set ofNv total energies, a
new set is chosen and the calculations are performed ag
This is repeated until the value for the current, Eq.~19!,
converges.

The self-consistent solution ofGR andG, for multiple
coupled energies is still computationally intensive. Also
self-consistent Born approximation requires a converged
lution of theS ’s and theG’s to conserve current. This can b
numerically problematic. For these reasons, we have so
out finite order, non-self-consistent treatments of scatteri

We tried a first Born treatment.9 However, we discov-
ered that the approach is only valid for calculating the val
current of an RTD. The problem arises because the first B
treatment approximates (12gRsR)21 as 11gRsR which is
only valid forgRsR ! 1. We found, numerically, that for an
typical RTD, a first Born treatment of scattering resulted
the spectral function becoming negative near resonance~an
explanation is given in Ref. 10! with a corresponding nega
tive current density in that narrow energy range. Referen
37 and 38 are examples of the use of first Born approxim
tions. For a general purpose device calculation, it is esse
to use a finite order treatment of scattering which keepssR

in the denominator ofGR.

VI. MULTIPLE SEQUENTIAL SCATTERING

The only finite order approach that we have found wh
can be used for both the calculation of the resonant and
resonant current is based on an algorithm which allows
to truncate the continued fraction expansion ofGR, Eq. ~72!,
at any order and still conserve current. The correspond
equation forG,, Eq. ~75! or ~79!, becomes a truncate
power series expansion. The equations resulting from a
order truncation can be shown to be identical to equati
written down by Roblin and Liou.6 The approach is a singl
electron theory which ignores the Pauli exclusion princi
in the calculation of the polar optical phonon self-energ
From an applied point of view the approach has strong p
tive aspects: it allows fast first order calculations, it co
serves current, and it appears to give reasonable phy
results for devices under high bias. From a theoretical p
of view the approach is unsatisfying and incorrect; it viola
detailed balance in equilibrium giving rise to non-zero eq
librium current flow for devices that are not symmetric. Ne
ertheless, it is the only finite order approach that we h
found that consistently gives reasonable results for a var
of high bias devices.

The greatest difficulty in deriving a non-self-consiste
approximation for a self-energy is ensuring current cons
vation. Diagrammatic perturbation theory offers rules th
can be mechanically followed which ensure current cons
vation. However, diagrammatic perturbation theory is ba
on a power series expansion of the Green function. Sinc
partial power series expansion is not useful to us for mod
ing RTDs, we are forced to work with a partial continue
fraction expansion, and there are no rules, of which we
aware, that can be followed which ensure current conse
7854 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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tion. Thus, we are forced to derive approximations for t
self-energies using physical, intuitive arguments, and t
check afterwards that the approximations do conse
current.

The general physical picture which guides us is the m
tiple sequential scattering picture which informs the work
Roblin and Liou.6 The particular picture which leads to ou
final equations is the following. A plane wave,c0, injected
from the contact at energyE propagates into the device an
scatters either elastically due the the random potential of
terface roughness, alloys, ionized dopants, or acou
phonons, or inelastically due to polar optical phonons. F
is removed from the incident wave and fed into the scatte
waves,c1, at energiesE andE6v, which have no phase
coherence withc0. The termv is the polar optical phonon
energy. The wavec1 now propagates and scatters elastica
giving rise toc2, etc. An infinite number of elastic scatterin
events and only one inelastic scattering event are allowe
occur. When one extends the multiple sequential scatte
algorithm to infinite sequential scattering, it becomes
self-consistent Born approximation. Our derivations use
above picture combined with a physical interpretation of
self energies.39,40 In the non-equilibrium Green function for
malism, the effect of outscattering is contained inSR and the
inscattering is contained inS,.

A. Single sequential elastic scattering

1. Equations of motion

We first derive equations for treating incoherentelastic
scattering in the single sequential scattering approximatio10

In Appendix B, we use these simple equations to dem
strate current conservation, the violation of detailed balan
and the non-zero equilibrium current. Eqs.~80–83! can be
shown to lead to identical expressions for the current a
self-energy written down by Roblin and Liou in Secs. V a
VI of Ref. 6.

For single sequential elastic scattering, we have an in
dent wavec0(k), whose propagation is governed byG0

R ,
scattering and creating a wavec1(k8) which has no phase
coherence withc0(k). Sincec1(k8) suffers no further scat-
tering, its propagation is governed by the bare Green fu
tion, G1

R . The equations that we write down for the Gre
functions are

~E2Ho
D2SRB2D^G1

R!G0
R51, ~80!

FIG. 2. Physical interpretation of the self-energies for single sequen
scattering.SR accounts for the out scattering and energy shifts andS,

accounts for the in scattering.
Lake et al.



reen
FIG. 3. Flow chart showing the multiple sequential scattering algorithm for incoherentelasticscattering. The equations are numbered so that the bare G
function isG0
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~E2Ho
D2SRB!G1

R51. ~81!

The self-energy,D^G1
R , in the equation of motion forG0

R

accounts for the loss and spectrum shift resulting from
outscattering of statec0 to c1. The equations that we write
down forG0

, andG1
, are

G0
,5G0

RS,BG0
A , ~82!

G1
,5G1

R@D^G0
,#G1

A . ~83!

The source term forG0
, , S,B is due to injection from the

contacts. The source term forG1
, , D^G0

, , is due to inscat-
tering fromG0

, . Figure~2! illustrates the physical interpre
tation of the self-energies. The left reservoir injects a st
k0 into the device (S,B). Flux can leave statek0 by either
leaving the device (SRB) or incoherently out scattering int
J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
e

te

another state (SR). The out scattered flux fromk0 is scat-
tered into statek1 (S

,). Statek1 leaks out into the contact
(SRB).

This set of equations is solved by first calculating t
bare Green functionG1

R , then the self-energy,D^G1
R , and

then the Green functionG0
R . With G0

R , one then calculates
G0

, , thenD^G0
, , and finallyG1

, . The electron density and
current is found from summing the contributions from bo
G0

, andG1
, using Eqs.~18! and ~19!, respectively.

2. Truncated expansions

To observe the relationship between Eqs.~80! and ~81!
and the truncated continued fraction expansion of Eq.~72!,
write s1

R asD^ (E2Ho
D2SRB)21 and substitute it into Eq.

~80! to obtain
7855Lake et al.
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R5~E2Ho

D2SRB2D^ ~E2Ho
D2SRB!21!21, ~84!

which is the first order truncation of Eq.~72!.
To observe the relationship between Eqs.~82! and ~83!

and the truncated power series expansion of Eq.~75!, note
that the solution of the diagonal elements ofG0

, is ~in the
single band model using the notation of Eq.~75!!
G0

,5uG0
Ru2S,B5S0. The solution for the diagonal elemen

of G1
, is ~again, using the notation of Eq.~75!!

G1
,5uG1

Ru2D^S0. DefiningG
,5G0

,1G1
, , we get

G,5S01uG1
Ru2D^S0 ~85!

similar to the first two terms of Eq.~75!.
The difference between simple truncation of Eqs.~75!

and ~85! is that there are two different Green functions,G0
R

andG1
R , contained on the right hand side of Eq.~85!. G1

R is
shown explicitly, andG0

R is contained inS0. This is essential
to conserve current. However, it makes impossible the e
librium relationship betweenG, and the spectral function
or sum of spectral functions. In other words, there is
equilibrium relationshipG,5 i f A in the multiple sequentia
scattering theory.6 This is the source of the violation of de
tailed balance and of the non-zero equilibrium current.

B. Multiple sequential elastic scattering

The extension of Eqs.~80–83! to include multiple scat-
tering events is straightforward. The equations for the
tarded Green functions governing the propagation of the s
cessively scattered waves are

@E2Ho
D2SRB2D^G1

R~E!#G0
R~E!51

@E2Ho
D2SRB2D^G2

R~E!#G1
R~E!51

A

@E2Ho
D2SRB2D^GN

R~E!#GN21
R ~E!51

@E2Ho
D2SRB#GN

R~E!51. ~86!

The physical interpretation of Eqs.~86! is as follows.G0
R

governs the propagation of the initial injected wave,c0. The
self-energyD^G1

R(E) accounts for the spectrum shift an
loss due to the incoherent elastic out scattering into s
c1. G1

R governs the propagation of statec1, and G1
R is

dressed by the self-energyD^G2
R(E) resulting from the out

scattering ofc1 into statec2, etc.
The set of equations for theG, are
7856 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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G0
,~E!5G0

RS,BG0
A~E!

G1
,~E!5G1

R~E!@D^G0
,~E!#G1

A~E!

A

GN21
, ~E!5GN21

R ~E!@D^GN22
, ~E!#GN21

A ~E!

GN
,~E!5GN

R~E!@D^GN21
, ~E!#GN

A~E!. ~87!

Eqs.~87! are the Green function analogue to the wave fu
tion equations for thec i . Their physical interpretation is a
follows. G0

, corresponds toc0. The source term,S,B, is
due to injection from the contacts and propagation is g
erned byG0

R . G1
,(E) corresponds toc1(E). The source

term,D^G0
,(E), results from the incoherent elastic insca

tering of G0
,(E) and propagation is governed byG1

R(E).
G1

, elastically out scatters providing the source term
G2

,(E), etc. The electron density and current are found fr
summing the contributions from all of theGi

, using Eqs.
~18! and ~19!, respectively.

In Fig. ~3!, we show a flow chart displaying the order
which the equations are solved. In the figure, we reverse
numbering system of the equations to correspond to the n
bering system used in the numerical solution procedure.
bare Green function becomesG0

R . The number of eventsN
can be set in advance, or it can be determined by a con
gence criterion forGN

R .
We have used the simple examples of single sequen

and multiple sequential elastic scattering to investigate
properties of the multiple sequential scattering algorith
We now derive the equations which we find most useful
our device simulator in which elastic scattering is treated
the multiple sequential scattering or self-consistent Born
proximation and the polar optical phonon scattering
treated in the single sequential scattering approximation.

C. Multiple sequential elastic scattering and single
sequential polar optical phonon scattering

We write down the series of equations which are t
starting point for both the MSS and self-consistent Bo
treatment of the elastic scattering processes. If we trun
the series of equations at some finite order, we get an M
algorithm. If we let the series of equations go to infini
order, we can analytically sum the series to obtain a s
consistent Born treatment of the elastic scattering.
1. Equations of motion for G R

The physical picture described in the paragraph prec
ing Sec.~VI A ! leads one to write down the following serie
of equations for Green functions which govern the propa
tion of the various scattered waves,c i .
~88!
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@E2Ho
D2SRB2Del^G2

R~E!#G1
R~E!51

@E2Ho
D2SRB2Del^G3

R~E!#G2
R~E!51.

A ~89!

@E1v2Ho
D2SRB2Del^G2

R~E1v!#G1
R~E1v!51

@E1v2Ho
D2SRB2Del^G3

R~E1v!#G2
R~E1v!51.

A ~90!

@E2v2Ho
D2SRB2Del^G2

R~E2v!#G1
R~E2v!51

@E2v2Ho
D2SRB2Del^G3

R~E2v!#G2
R~E2v!51

A ~91!

In Eqs.~88–91!, SRB accounts for the open system bounda
conditions,^ indicates convolution over transverse mome
tum, Del contains the matrix element squared due to
elastic scattering processes,Dpop

.em } nB11 contains the ma-
trix element squared governing the out scattering due to
emissionof polar optical phonons, andDpop

.ab } nB contains
the matrix element squared governing the out scattering
to the absorptionof polar optical phonons~see Eq.~A9!!.
The equations are written in full matrix notation and tran
verse momentumk has been suppressed for compactnes
notation.

The physical interpretation of Eqs.~88–91! is as follows.
G0
R governs the propagation of the initial injected wav

c0. Sel
R andspop

R account for the spectrum shift and loss d
to the incoherent elastic and inelastic scattering, respectiv
The wavec0(E) can be scattered into statesc1 at three
different energies,E, andE6v. The statesc1 can then be
scattered elastically an infinite number of times into sta
c2, c3, etc. The propagation of statesc1 2 c` is governed
byG1

R2G`
R .

2. Equations of motion for G <

The physical picture described in the paragraph prec
ing Sec.~VI A ! leads one to write down the following serie
of equations forG,.

G0
,~E!5G0

R~E!S,BG0
A~E!, ~92!

G1
,~E!5G1

R~E!@Del^G0
,~E!#G1

A~E!,

G2
,~E!5G2

R~E!@Del^G1
,~E!#G2

A~E!,

A ~93!

G1
,~E1v!5G1

R~E1v!@Dpop
,ab

^G0
,~E!#G1

A~E1v!

G2
,~E1v!5G2

R~E1v!@Del^G1
,~E1v!#G2

A~E1v!

G3
,~E1v!5G3

R~E1v!@Del^G2
,~E1v!#G3

A~E1v!,

A ~94!

G1
,~E2v!5G1

R~E2v!@Dpop
,em

^G0
,~E!#G1

A~E2v!

G2
,~E2v!5G2

R~E2v!@Del^G1
,~E2v!#G2

A~E2v!

G3
,~E2v!5G3

R~E2v!@Del^G2
,~E2v!#G3

A~E2v!.

A ~95!
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Eqs.~92–95! for Gi
, are the Green function analogue to th

wave function equations for thec i . Their physical interpre-
tation is as follows.G0

, corresponds toc0. The source term,
S,B, is due to injection from the contacts and propagation
governed byG0

R ~note thatGA is the hermitian conjugate o
GR). G1

,(E) corresponds toc1(E). The source term,
Del^G0

,(E), results from the elastic in scattering o
G0

,(E) and propagation is governed byG1
R(E). G1

, elasti-
cally out scatters providing the source term forG2

,(E), etc.
G1

,(E6v) corresponds toc1(E6v). The source term,
Dpop

,ab,em
^G0

,(E), results from the inelastic in scattering o
G0

,(E) due to the polar optical phonons~see Eq.~A9!! and
propagation is governed byG1

R(E6v). G1
,(E6v) elasti-

cally out scatters providing the source term forG2
,(E6v),

etc.
If we truncate the chains of Eqs.~89–91! and~93–95! to

any finite order, we have a multiple sequential scatter
treatment of the incoherent elastic scattering and a sin
sequential scattering treatment of the polar optical pho
scattering. To solve the truncated series of equations,
begins by solving for the bare retarded Green functions
energiesE and E6v and at all transversek. Then one
moves up the three chains of Green function equations s
ing for theGi

R . At the top, one calculatesG0
R and then moves

over to the equations forG, gettingG0
, and then down the

three chains of equations forGi
, at energiesE andE6v.

The electron density and current is found from summing
contributions from all of theGi

, at energiesE and E6v
using Eqs.~18! and ~19!, respectively.

In Fig. ~4!, we show a flow chart displaying the order
which the equations are solved. In the figure, we again
verse the numbering system of the equations to correspon
the numbering system used in the numerical solution pro
dure. The bare Green function becomesG0

R . The number of
eventsN can be set in advance, or it can be determined b
convergence criterion forGN

R independently at each energ
E andE6v.

D. Self-consistent born elastic scattering and single
sequential polar optical phonon scattering

1. Equations of motion for G R and G <

If we let the series of Eqs.~89–91! become infinite, all
of theGi

R’s, i P $1,•••,`%, at a given energy and transvers
momentum, are identical. Therefore, the infinite set of E
~88–91! becomes

@E2Ho
D2SRB2Sel

R ~E!2spop
R ~E!#G0

R~E!51, ~96!

@E2Ho
D2SRB2Sel

R ~E!#Gel
R ~E!51, ~97!

@E1v2Ho
D2SRB2Sel

R ~E1v!#Gel
R ~E1v!51, ~98!

@E2v2Ho
D2SRB2Sel

R ~E2v!#Gel
R ~E2v!51, ~99!

where in Eqs.~96–99!, Sel
R (E)5Del^Gel

R (E) is the self-
energy due to the elastic scattering mechanisms and
calculated self-consistently withGel

R , and spop
R (E)5Dpop

.em

^Gel
R (E2v)1Dpop

.ab
^Gel

R (E1v).
7857Lake et al.
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The physical observables of electron density and cur
are calculated by summing the contributions from all of t
Gi

, in Eqs.~92–95!. We define

Gel
,~E!5(

i51

`

Gi
,~E!. ~100!

Since all of theGi
R5Gel

R are identical for a given energy an
transverse momentum, we can perform the sum. Summ
the infinite series of Eqs.~93!, we have
ch

-

J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
nt

g ~101!
Summing the infinite series of Eqs.~94!, we have
~102!
and finally, summing the infinite series of Eqs.~95!, we have

~103!
e-
Equations~96–99!, ~92!, and ~101–103! are the final set of
equations that we need to solve.

2. Solving the equations

We now write down the equations in the order in whi
they are solved. First, the self-energies,Sel

R in Eqs.~97–99!
are solved self-consistently with their correspondingGel

R at
energiesE andE6v and for all transverse momentum,k.
The equations are

@E2Ho
D2SRB2Sel

R ~E!#Gel
R ~E!51, ~104!

Sel
R ~E!5Del^Gel

R ~E!, ~105!

@E1v2Ho
D2SRB2Sel

R ~E1v!#Gel
R ~E1v!51, ~106!

Sel
R ~E1v!5Del^Gel

R ~E1v!, ~107!

@E2v2Ho
D2SRB2Sel

R ~E2v!#Gel
R ~E2v!51, ~108!

Sel
R ~E2v!5Del^Gel

R ~E2v!. ~109!

With the solution of Eqs.~104–109!, we now have the elas
tic self-energy,Sel

R (E), from Eq. ~105! that goes into the
matrix on the left hand side of Eq.~96!, and we calculate the
inelastic self-energy, spop

R (E), from Gel
R (E1v) and

Gel
R (E2v):
spop
R ~E!5Dpop

.em
^Gel

R ~E2v!1Dpop
.ab

^Gel
R ~E1v!.

~110!

Knowing the self-energies,spop
R (E) and Sel

R (E), we then
calculateG0

R(E) from ~96!:

@E2Ho
D2SRB2Sel

R ~E!2spop
R ~E!#G0

R~E!51. ~111!

With G0
R(E), we immediately haveG0

,(E) from ~92!:

G0
,~E!5G0

R~E!S,B~E!G0
A~E!. ~112!

We can now calculate the source terms for Eqs.~101–103!,

sel
,05Del^G0

,~E!, ~113!

spop
,ab5Dpop

,ab
^G0

,~E!, ~114!

spop
,em5Dpop

,em
^G0

,~E! ~115!

and then we self-consistently solve Eqs.~101–103! for Gel
,

and Sel
, using Jacobi iteration combined with SOR as d

scribed in Sec.~V B!.

Gel
,~E!5Gel

R ~E!@sel
,01Sel

,~E!#Gel
A ~E!, ~116!

Sel
,~E!5Del^Gel

,~E!, ~117!

Gel
,~E1v!5Gel

R ~E1v!@spop
,ab1Sel

,~E1v!#Gel
A ~E1v!,

~118!
7859Lake et al.
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Sel
,~E1v!5Del^Gel

,~E1v!, ~119!

Gel
,~E2v!5Gel

R ~E2v!@spop
,em1Sel

,~E2v!#Gel
A ~E2v!,

~120!

Sel
,~E2v!5Del^Gel

,~E2v!. ~121!

The current and electron density per unit total energy,E, in
the device is then calculated by summing the contributi
from G0

,(E), Gel
,(E), andGel

,(E6v) using Eqs.~19! and
~18! ~ignoring the integral over energy!. After the calcula-
tions are performed for one total energy, another total ene
is chosen, the calculations are repeated and the new cu
per unit total energy is added to the running total. This
repeated until the integrated total current and electron d
sity is obtained. Current conservation is shown in the sa
way as in Sec.~VI A ! summing the contributions to the d
vergence of the current fromG, calculated in Eqs.~112!,
~116!, ~118!, and~120!.

A flow chart of the solution procedure is shown in Fi
~5!. Self-consistent calculations are indicated by box
drawn with heavier linestyles.
e
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c
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A
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For the self-consistent potential calculation, we a
need the charge density in the leads. This is calculated u
2 iG,5 fA0 in Eq. ~18! where A05 i (G0

R2G0
A) with G0

R

given by Eq. ~88!. A0 is used because it is the mo
‘‘dressed’’ spectral function best representing the true sp
tral function of the leads. The charge density is then used
generating the Jacobian in the Newton-Raphson schem
described in Appendix C.

E. Current

Once one is confident that the numerical solutions
conserve current, considerable numerical efficiency can
obtained by calculating the current using Eq.~45! modified
in a similar manner as Eq.~B1! in Appendix B. These equa
tions require only the block corner elements ofGR and
G,. This information already exists from the MSS or se
consistent Born calculations. Eq.~19! uses the off-diagona
blocks of G, which require an extra calculation. For th
MSS approaches described in Secs.~VI B ! and ~VI C!, the
current per unit incident energy is found from~for a nearest
neighbor model!
m

J0~E!5
2e

\A (
k
trH G1,1

B ~k,E!F f eA01,1
~k,E!1 i SG01,1

, ~k,E!1 (
n51

N

Gn1,1
, ~k,E!D G J

1
2e

\A (
k
trH G1,1

B ~k,E1v!i(
n51

N

Gn1,1
, ~k,E1v!J 1

2e

\A (
k
trH G1,1

B ~k,E2v!i(
n51

N

Gn1,1
, ~k,E2v!J . ~122!

For the combined self-consistent Born calculation described in Sec.~VI D !, the current per unit incident energy is found fro
~for a nearest neighbor model!

J0~E!5
2e

\A (
k
tr$G1,1

B ~k,E!@ f LA01,1
~k,E!1 i ~G01,1

, ~k,E!1Gel1,1
, ~k,E!!#%

1
2e

\A (
k
tr$G1,1

B ~k,E1v!iGel1,1
, ~k,E1v!%1

2e

\A (
k

$G1,1
B ~k,E2v!iGel1,1

, ~k,E2v!%, ~123!
n-

to
the

hm

lf-
co-
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ing.
late

lgo-

B

whereA05 i (G0
R2G0

A). The termf LA0 results from the con-
tact source term in the equation forG0

, and represents th
inflow of current from the contact to the device. TheG,

terms represent the backflow from the device to the cont

VII. NUMERICAL COMPARISON OF MSS AND SCB
CALCULATIONS

In this section, we numerically illustrate the convergen
of the multiple sequential scattering algorithm with the se
consistent Born algorithm. We consider two different RT
at T54.2 K which differ only in the barrier material. On
RTD has AlAs barriers and the other has Al0.35Ga0.65As bar-
riers. The device structure consists of 19.2 nm intrinsic Ga
spacer layers, 3.4 nm barriers, a 5.66 nm GaAs well, an
doped 1018 cm23 GaAs contacts. The AlAs barrier RTD i
the same device modeled in Refs. 14–16 using the algori
illustrated in Fig.~4!. Here, we show the convergence of t
elastic multiple sequential scattering algorithm illustrated
t.

e
-

s
Si

m

Fig. ~3! with the self-consistent Born calculation which co
sists of Eqs.~65!, ~66!, ~70!, and~71!. The interface rough-
ness self-energy, Eq.~A35!, is used with a correlation length
of L510 nm.

Figure ~6! shows how the MSS algorithm converges
the SCB result at the peak and valley current regions of
GaAs / AlAs RTD. Figure 6~a! shows the overallI -V curve
calculated using the SCB algorithm and the MSS algorit
with one scattering event~Fig. ~3! with N51). As discussed
in Ref. 15, the electrostatic potential is calculated se
consistently with the quantum charge in the absence of in
herent scattering. Once the potential is obtained, it is t
used for the calculation which includes incoherent scatter
This approach is used to reduce CPU time since we calcu
an extreme number of scattering events (N54000 in Fig.
~3!! to demonstrate convergence of the MSS and SCB a
rithms.

Figure~6b! shows the convergence of the MSS and SC
algorithms in the valley current region of theI -V. The cur-
Lake et al.
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FIG. 5. Flow chart illustrating the algorithm for self-consistent Born elastic scattering and single sequential inelastic scattering. Self-consistent calcu
indicated by boxes drawn with heavier linestyles.
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rent calculated in a second order multiple sequential sca
ing approximation is essentially identical to the current c
culated in a self-consistent Born approximation. The fi
order calculation is very good. This is consistent with t
‘‘capture’’ point of view of Chevoir and Vinter7 and the
numerical result of Johansson.41

The convergence properties of the MSS algorithm at
peak current are quite different. We believe that the conv
J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
r-
-
t

e
r-

gence of the MSS algorithm at peak current scales asG/G i

whereG is the fully dressed width of the resonance andG i is
the intrinsic width of the resonance. This quantity is simp
the scattering rate times the resonant state lifetime. The
trinsic resonance width of the AlAs barrier RTD is 3.0meV.
The dressed resonance width in the self-consistent Born
proximation is 2.7 meV. Figure~6c! shows the peak curren
calculated with the MSS algorithm usingN51, 2, 4, 8, and
7861Lake et al.



FIG. 6. Numerical demonstration of the convergence of the multiple sequential scattering algorithm and the self-consistent Born algorithm.~a! I-V of GaAs
/ AlAs RTD calculated using the self-consistent Born algorithm and the MSS algorithm with one scattering event.~b-d! Convergence of the MSS algorithm
to the SCB algorithm:~b! in the valley current region,~c! in the peak current region for few scattering events,N51225, and~d! in the peak current region
for N52524000.
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25 scattering events. Initially, the value of the current ten
to oscillate as the number of scattering events is increa
There is almost no change in the current as the numbe
scattering events is increased from four to 25. After 25 sc
tering events, the MSS algorithm begins monotonically c
verging as shown in Fig.~6d!. At largeN the convergence o
the MSS algorithm begins to saturate with a current sligh
below the SCB result~compare theN52800 and the
N54000 curves in Fig.~6d!!.

For the Al0.35Ga0.65As barrier RTD, the intrinsic resonan
width is 780meV which is 260 times larger than the AlA
barrier RTD. Figure 7 shows that the convergence of
MSS algorithm at peak current is very fast. AfterN55 scat-
tering events, the MSS calculation and the self-consis
Born calculation are essentially identical.
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VIII. SUMMARY AND CONCLUSION

We have presented theory which can be used at a n
ber of different levels of sophistication and complexity f
modeling high bias quantum devices. The simplest lev
summarized by Eq.~50!, is a generalized tunneling formul
which treats injection from both emitter continuum an
quasi-bound states. It is just as fast as the usual tunne
approaches2 and much more flexible, allowing one to mod
devices such as those shown in Ref. 1. This is the le
heavily used in device design to quickly obtainI -V charac-
teristics. At this level we have implemented several differe
nearest neighbor models: single-band,1 two-band,14 and
sp3s* .14,17 The next level is to include scattering in the d
vice. We have numerically implemented in a single ba
Lake et al.
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model the combined MSS treatment of elastic scattering
single sequential scattering treatment of polar optical pho
scattering described in Sec.~VI C!, and the combined self
consistent Born and single sequential scattering treatmen
polar optical phonon scattering described in Sec.~VI D !. The
valley current of an RTD calculated using the multiple s
quential scattering algorithm converges within a few scat
ing events to the valley current calculated with the se
consistent Born algorithm. The convergence of the multi
sequential scattering algorithm at a bias corresponding to
peak current of an RTD is much slower.
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APPENDIX A: SCATTERING SELF-ENERGIES

To calculate the scattering self-energy, we calculate
path ordered Green function in the interaction representat

Ga,L;a8,L8
P

~k;t,t8!

5
2 i

\
^Pe

2 i
\ *C dsH8~s!ca,L,k~ t !ca8,L8,k

†
~ t8!&, ~A1!

where P is the path ordering operator,C is the Keldysh con-
tour, andH8(s) is the perturbing Hamiltonian. The bracke
^•••& indicate the non-equilibrium ensemble average29,42and
an ensemble average over the random potential distribu
resulting from interface roughness, alloy disorder, and i

FIG. 7. Numerical demonstration of the convergence of the multiple
quential scattering algorithm and the self-consistent Born algorithm at p
current of a GaAs / Al0.35Ga0.65As RTD.
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ized dopants. The scattering self-energies result from the
ond order term in the expansion of the exponential. For p
non scattering, the first order term is zero sin
^aq&5^aq

†&50. For alloy disorder and interface roughnes
the first order term results in the virtual crystal approxim
tion ~VCA! Hamiltonian and, for ionized dopants, the fir
order term is included through Poisson’s equation. Us
Wick’s theorem to group the terms,43 one obtains an equa
tion of the form~in block matrix notation!

GL;L8
P

~k;t,t8!5gL;L8
P

~k;t,t8!

1E
C
dsE

C
ds8(

L1
(
L2

@gL;L1
P ~k;t,s!

3SL1 ;L2
P ~k;s,s8!gL2 ;L8

P
~k;s8,t8!#. ~A2!

In the self-consistent Born approximation the baregP that
occurs inSP in Eq. ~A2! is replaced with the fullGP. The
real-time self-energies that we need,S,, S., andSR, are
obtained from theSP using the relations of Langreth.29

1. Phonons

The potential felt by the electrons due to bulk phono
has the general form of

Vep5
1

AV (
q
Uqe

iq•r~aq1a2q
† !, ~A3!

whereaq is the destruction operator for a phonon in mo
q. The second quantized HamiltonianHep is

Hep5E d3rc†~r !Vep~r !c~r !, ~A4!

wherec(r ) is the field operator of Eq.~5!. In the long wave-
length approximation whereeiq•r is assumed to be slowly
varying on the order of a localized orbital,

Hep5(
L,k

1

AV (
q
Uqe

iqzDLFeiqzD/2(
a

ca,L,k
† ca,L,k2qt

1(
c
cc,L,k
† cc,L,k2qtG~aq1a2q

† !. ~A5!

We write the expressions forS. andS,. The general
forms ofS, andS. are

Sa,L;a8,L8
,

~k;E!5
1

V (
q

uUk2qu2eiqzD~L2L81na,a8!

3@nqGa,L;a8,L8
,

~qt ;E2\vq!

1~nq11!Ga,L;a8,L8
,

~qt ;E1\vq!# ~A6!

and

Sa,L;a8,L8
.

~k;E!5
1

V (
q

uUk2qu2eiqzD~L2L81na,a8!

3@~nq11!Ga,L;a8,L8
.

~qt ;E2\vq!

1nqGa,L;a8,L8
.

~qt ;E1\vq!#, ~A7!

-
ak
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where the indicesa anda8 run over the anion and catio
states,nq is the Bose-Einstein factor for modeq, and

na,a85H 1
2 a5a, a85c

2 1
2 a5c, a85a

0 otherwise.

~A8!

In Eq. ~A8!, the indicesa andc indicate an anion and catio
orbital, respectively.

a. Polar optical phonons

For dispersionless polar optical phonon
uUqu25bq2/(q21qo

2)2 whereb5e2\v/2 (1/e`2 1/eo) and
qo is the inverse screening length.44 If the Green functions
are only functions of the magnitude of the transverse m
mentum such as in a single or two band45 model, then the
self energies can be written as

Sa,L;a8,L8
.

~k;E!5
b

pE d2qt
4p2 I ~ uL2L81na,a8u,k,qt!

3@~nB11!Ga,L;a8,L8
.

~qt ;E2\v!

1nBGa,L;a8,L8
.

~qt ;E1v!# ~A9!

and

Sa,L;a8,L8
,

~k;E!5
b

pE d2qt
4p2 I ~ uL2L81na,a8u,k,qt!

3@nBGa,L;a8,L8
,

~qt ;E2\v!

1~nB11!Ga,L;a8,L8
,

~qt ;E1\v!#,

~A10!

wherenB is the Bose-Einstein factor for energy\v, and

I ~ uL2L81na,a8vzu,k,qt!

5E
0

p/a

dqz
cos@qzD~L2L81na,a8!#

A~qz
21qt

21k21qo
2!224k2qt

2
2E

0

p/a

dqz

3
cos@qzD~L2L81na,a8!#qo

2~qz
21qt

21k21qo
2!

@~qz
21qt

21k21qo
2!224k2qt

2#3/2
.

~A11!

For all of the self-energies to follow, we write the form
for S,. The expression forS. andSR are obtained by sub
stituting everywhere the superscript ‘,’with‘ .’ or ‘R’, re-
spectively. However, the expressions forS. will not be
needed, because all of the following scattering mechani
are, or will be approximated as, elastic.

b. Acoustic phonons

The coupling for acoustic phonons is

uUqu25
\D2

2rc
q, ~A12!

whereD is the deformation potential,r is the semiconducto
density, andc is the velocity of sound in the material. I
we make the usual assumptions of low energy~elastic!
7864 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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s

scattering and high temperature44 so that
nq'nq11' kBT/\vq5kBT/\cq then the self-energy is

Sa,L;a8,L8
,

~E!5dL,L8za,a8

D2kBT

rc2a E d2k

4p2Ga,L;a8,L
,

~k,E!,

~A13!

where

za,a85H 1 $a,a8%5$a,a8% or $c,c8%

0 otherwise
. ~A14!

The acoustic phonon self-energy is block diagonal i
the anion and cation sub-blocks. The sub-blocks are fu
matrices.

2. Alloy disorder

We consider an alloy of the typeAxB12xC with a po-
tential of the form

V~r !5(
RA

VA~r2RA!1(
RB

VB~r2RB!1(
RC

VC~r2RC!.

~A15!

We define an average potential

V̄~r !5 (
Ri5$RA&RB%

@xVA~r2Ri !1~12x!VB~r2Ri !#

1(
RC

VC~r2RC! ~A16!

and the perturbing potential

Val~r !5V~r !2V̄~r !

5~12x!(
RA

dV~r2RA!2x(
RB

dV~r2RB!,

~A17!

where dV(r )5VA(r )2VB(r ). The matrix elements of the
average~virtual crystal approximation! Hamiltonian are

^a,LuHVCAub,L8&5^a,LuxHAC1~12x!HBCub,L8&
~A18!

and the matrix elements ofdV(r ) are

Ma;a85^audV~r !ua8&5^auHAC2HBCua8&, ~A19!

FIG. 8. Self-energy diagramSc,c8 for both alloy and interface roughness
scattering.
Lake et al.
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whereHAC andHBC are the Hamiltonians of the binary com
pounds, AC and BC, respectively. For the following discu
sion, we assume that the alloy is of the cation species.
reasons of numerical tractability, we consider only the di
onal cation-cation matrix elements ofdV(r ) which accounts
for the chemical variations and ignores the bond len
variations in the calculation of the self-energy.46

The second quantized Hamiltonian representing the a
disorder is

Hal5E d3rc†~r !Val~r !c~r !. ~A20!

Inserting Hal into Eq. ~A1! and expanding out to secon
order, we are faced with evaluating^Val(r )Val(r 8)& where
the brackets indicate an ensemble average. In a way sim
to the treatment of impurity averaging,47 we define the en-
semble average of a function of multiple random cation si
F (R1 , . . . ,RN), as

F 5
1

Ncat
(
R1

•••

1

Ncat
(
RN

F ~R1 , . . . ,RN!, ~A21!

where theNcat is the total number of cation sites and th
sums run over all cation sites. With this definitio
V̄al(r )50, and

^Val~r !Val~r 8!&5x~12x!(
Rcat

dV~r2Rcat!dV~r 82Rcat!,

~A22!

where the sum runs over all cation sites. Note that unlike
treatment of impurity averaging, in which terms of ord

FIG. 9. Model of interface roughness.
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N2 are generated by the above procedure and ignored,47 we
have not ignored any terms in the evaluation
^Val(r )Val(r 8)&, and Eq.~A22! is exact.

The self-energy for both alloy scattering and interfa
roughness scattering has the form shown in Fig.~8!. The
layer index has been suppressed. For alloy scatter
uUk2qu252D2 which results from a factor ofA/Nt where
A is the cross sectional area andNt5(Rt

. The expression for
the self-energy is

Sc,L;c8,L
,

52D2x~12x!Mc,L;c,LMc8,L;c8,L

3
1

A (
q
Gc,L;c8,L

,
~q!. ~A23!

The self-energy matrix is non-zero only in the cation su
block of the block diagonal, and, within that sub-block, it
a full matrix.

In the single band model, we follow Chevoir and Vint
to obtain the matrix element squared,M2.7 For example,
with Al xGa12xAs we use the conduction band offset of th
two different materials, e.g., the conduction band offset
tween GaAs and AlAs.

3. Interface roughness

We model the effect of substitutional disorder in an i
terface layer in the same way as substitutional disorder
sulting from alloy composition. We confine the disorder to
single layer and, within that layer, the cations of a given ty
cluster into islands. This approach is valid for electron wa
lengths large compared to the cluster sizes. Figure~9! illus-
trates our model.

The potential in the interface layer is

V~r !5(
RB

VB~r2RB!1(
RC

VC~r2RC!1(
RA

VA~r2RA!.

~A24!

RB andRC are the position of the cationsB andC in the
interface layer,L. Let materialB cover a fractionx of the
interface and materialC cover a fraction 12x of the inter-
face. Then the average potential is

V̄~r !5 (
R5$RB&RC%

@xVB~r2R!1~12x!VC~r2R!#

1(
RA

VA~r2RA!, ~A25!

where the sum overR runs over all cation sites in layerL.
The perturbing potential is

Vir~r !5V~r !2V̄~r !

5~12x!(
RB

dV~r2RB!2x(
RC

dV~r2RC!

5 (
R5$RB&RC%

F~R!dV~r2R!, ~A26!

where
7865Lake et al.
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F~R!5H 12x R5RB

2x R5RC
. ~A27!

The average ofVir is zero and the autocorrelation ofF(R) is

^F~R!F~R8!&5x~12x!AF~ uR2R8u!. ~A28!

We will consider both Gaussian and exponential forms
AF(uR2R8u). The problem is now reduced to one of a sing
layer of alloy in which the cations of a given species clus
into islands. The clustering gives rise to a momentum dep
dence in the Fourier transform of the autocorrelation fu
tion. The matrix elements ofdV and the average~virtual
crystal! Hamiltonian are the same as in Eqs.~A18! and
~A19!.

The interface roughness self-energy shown in Fig.~8! is

Sc,L;c8,L
,

5x~12x!Mc,L;c,LMc8,L;c8,L

3
1

A (
q

uUk2qu2Gc,L;c8,L
,

~q!, ~A29!

whereL is an interface layer.
Traditionally, a Gaussian form forAF(ur t2r t8u) has been

assumed6,7,48,49

AF~ ur t2r t8u!5e2ur t2r t8u2/L2
~A30!

resulting in a spectral density of

uUqu25pL2e2L2q2/4. ~A31!

If we can approximateGc1 ,L;c2 ,L
, (k) as being dependent onl

on the magnitude ofk, then the self-energy in Eq.~A29!
becomes

Sc,L;c8,L
,

~k,E!5x~12x!pL2e2L2k2/4Mc,L;c,LMc8,L;c8,L

3E d2q

4p2 I 0S L2kq

2 De2L2q2/4Gc,L;c8,L
,

~q;E!,

~A32!

whereI 0 is the modified Bessel function,

I 0~x!5
1

pE0
p

duex cosu.

Recent scanning tunneling microscopy~STM! work in-
dicates that an exponential autocorrelation may be m
appropriate,50

AF~ ur t2r t8u!5e2ur t2r t8u/L ~A33!

with a spectral density of

uUqu25
2pL2

@11~qL!2#3/2
. ~A34!

If we can approximateGc1 ,L;c2 ,L
(k) as being dependent onl

on the magnitude ofk, then the self-energy in Eq.~A29!
becomes
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Sc,L;c8,L
,

~k,E!5x~12x!4L2Mc,L;c,LMc8,L;c8,LE d2q

4p2

3

ES p

2
,A 2

b11DGc,L;c8,L
,

~q;E!

~11L2~q2k!2!A11L2~q1k!2
, ~A35!

whereE is the complete elliptic integral of the second kin

ES p

2
,xD5E

0

p/2

duA12x2 sin2 u

andb5(11L2k21L2q2)/(2kqL2).
The approximations used in the single band model

alloy scattering discussed at the end of Subsec.~A 2! also
apply to interface roughness scattering.

4. Ionized impurities

The potential resulting from substitutional ionized do
ants is

V~r !5(
i
v~r2LiD ẑ2Ri !, ~A36!

wherev(r2LiD ẑ2Ri) is the potential resulting from an ion
ized dopant atom at lattice siteLiD ẑ1Ri andRi is the trans-
verse component of the lattice vector. The lattice vector r
resents the position of a cation for n-type doping and
position of an anion for p-type doping. However, the diffe
ence in position of the anion and the cation is negligib
compared to the screening length in semiconductors, so
distinction will be made between the two cases. The latt
vector is written in cylindrical form since the doping conce
tration is, in general, a function of the layer,Li .

An ensemble average is performed over the transve
plane using Eq.~A21! to obtain

^V~r !V~r 8!&5(
L

NL
I

Ncat
(
R

v~r2LD ẑ2R!

3v~r 82LD ẑ2R!. ~A37!

In Eq. ~A37!, NL
I is the number of ionized dopants in laye

L, Ncat is the number of cations in layerL, andR is the
transverse component of a lattice vector.

Using a screened potential of the form

v~r !5
e2e2qor

4per
, ~A38!

where qo is the inverse screening length,r5ur u, and the
two-dimensional Fourier transform

E d2Re2 ik•Rv~z,R!5
e2

2e

e2Aqo
2
1k2uzu

Aqo21k2
, ~A39!

the general form for the self-energy is
Lake et al.
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Sa1 ,L1 ;a2 ,L2
, ~k!5

e4

8e2 (
L

ns
L 1

A

3(
q

e2Aqo
2
1uk2qu2[ uL12Lu1uL22Lu]D

qo
21uk2qu2

3Ga1 ,L1 ;a2 ,L2
, ~q!, ~A40!

wherens
L5NL

I /A is the sheet ionized dopant density in lay
L.

There are two special cases that commonly occur.
first case is when the doping is confined to the leads and
in the device. Let the doping concentration in the left le
Ne , be uniform in the region from sites2` to Le and zero
elsewhere; let the doping concentration in the right le
Nc , be uniform in the region from sitesLc to ` and zero
elsewhere; and any layerL in the device lies betweenLe and
Lc . Converting the sum overL in Eq. ~A40! to an integral,
th

ive
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,

,

and integrating over the doped regions of the left and ri
leads, the self-energy becomes

Sa1 ,L1 ;a2 ,L2
, ~k!5

e4

8e2 (
e/c

Ne/c
3D 1

A (
q

3
e2Aqo

2
1uk2qu2[ uL12Le/cu1uL22Le/cu]D

@qo
21uk2qu2#3/2

3Ga1 ,L1 ;a2 ,L2
, ~q!, ~A41!

whereNe/c
3D is the doping density~1/volume! of the left/right

lead.
The second case is when the doping density,N3D, is

uniform throughout the device region and out to some la
Le in the left lead andLc in the right lead. The self energy i
then
Sa1 ,L1 ;a2 ,L2
, ~k!5

e4

8e2
N3D

1

A (
q

e2buL12L2uD@112buL12L2uD#2e2b~L11L222Le!D2e2b~2Lc2L12L2!D

b3 •Ga1 ,L1 ;a2 ,L2
, ~q!

~A42!
o

ds,
he
gy.
,

whereb5Aq021uk2qu2.

APPENDIX B: DETAILED BALANCE AND CURRENT
CONSERVATION FOR MULTIPLE SEQUENTIAL
SCATTERING

1. Detailed balance

To show the violation of detailed balance, we use
single sequential scattering example of Sec.~VI A 1 ! in a
single band model and start with the current expression g
by Eq. ~45!.

J0~E!5
2e

\A (
k

G1,1
B ~k!

3@ f LA01,1
~k!1 i ~G01,1

, ~k!1G11,1
, ~k!!#. ~B1!
e

n

Note that a termf LA11,1
does not appear since there is n

contact source term on the right hand side of Eq.~83!. One
immediately sees that if the usual equilibrium relation hol
G,5G0

,1G1
,5 i f A, then detailed balance holds, and t

equilibrium current is zero for each momentum and ener
In the following, since we are considering equilibrium

we drop the subscript onf sincef L5 f R5 f and write out the
expressions forA01,1

, iG01,1
, , and iG11,1

, . The expressions

needed for writing downA0 are, in full matrix notation,

A05G0
R~GB1G1!G0

A , ~B2!

where G15 i (s1
R2s1

A)5D^A1, and A15G1
RGBG1

A . Writ-
ing out the indices of Eq.~B2! results in
A01,1
~k!5G1,1

B ~k!uG01,1
R ~k!u21GN,N

B ~k!uG01,N
R ~k!u21(

j
uG01,j

R ~k!u2(
k8

Dj~k,k8!~G1,1
B ~k8!uG1 j ,1

R ~k8!u2

1GN,N
B ~k8!uG1 j ,N

R ~k8!u2!. ~B3!

Writing out the indices of Eq.~85!, the equilibrium expression foriG1,1
, 5 i (G01,1

, 1G11,1
, ) is

iG1,1
, ~k!52 f ~G1,1

B ~k!uG01,1
R ~k!u21GN,N

B ~k!uG01,N
R ~k!u2!2 f(

j
uG11,j

R ~k!u2(
k8

Dj~k,k8!~G1,1
B ~k8!uG0 j ,1

R ~k8!u2

1GN,N
B ~k8!uG0 j ,N

R ~k8!u2!. ~B4!
7867Lake et al.
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By inspection, one can see that for the su
fA0(k)1 iG,(k) to equal zero for each momentumk, G0

R

must be identical toG1
R . On the other hand, if this were th

case, then current would not be conserved in n
equilibrium.

For perfectly symmetric devices, the total equilibriu
current is zero. Substituting the equilibrium expressions
A01,1

andG1,1
, back into the current expression, Eq.~B1!, we

obtain

J0~E!5
2e

\A
f(

j
(
k,k8

Dj~k,k8!G1,1
B ~k!GN,N

B ~k8!

3@ uG01,j
R ~k!u2uG1 j ,N

R ~k8!u2

2uG11,j
R ~k!u2uG0 j ,N

R ~k8!u2# ~B5!

For a perfectly symmetric device, whereG1,j5GN,N2 j11

andDj5DN2 j11, the equilibrium current summed over a
transverse momenta is zero.

2. Current conservation

To show current conservation, we use the single sequ
tial scattering example of Sec.~VI A 1 ! with a single-band
model and local self-energies. We defineJ0 as the current
fromG0

, andJ1 as the current fromG1
, . Then from Eq.~67!

(
k

@J0i~k!2J0i21
~k!#

5
2e

\A (
k

@s1
R~k!G0

,~k!2G0
,~k!s1

A~k!#

5
2e

\A (
k
G0

,~k!~s1
R~k!2s1

A~k!!

52 i
2e

\A (
k
G0

,~k!(
k8

D~k,k8!A1~k8!, ~B6!

where, since the elastic scattering is local, the notationsG
represents scalar multiplication of the diagonal element
layer i andA152 i (G1

R2G1
A) is the spectral function corre

sponding toG1
R . Only two of the terms from Eq.~67! are

present since there is no in scattering source term,s,, on the
right hand side of Eq.~82!. The divergence ofJ1 is

(
k

@J1i~k!2J1i21
~k!#

5
2e

\A (
k

@s0
,~k!G1

A~k!2G1
R~k!s0

,~k!#

5
2e

\A (
k

@~G1
A~k!2G1

R~k!!s0
,~k!#

5 i
2e

\A (
k FA1~k!(

k8
D~k,k8!G0

,~k8!G . ~B7!

Again, only two terms are present since there is no out s
tering term, sR, on the left side of Eq.~81!. Since
D(k,k8)5D(k8,k), the sum of Eqs.~B6! and ~B7! is zero
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and current is conserved. The out scattered current fromJ0 is
precisely the in scattered current intoJ1, and there is no
further out scattering fromJ1. If we generalized this to mul-
tiple sequential scattering, we would see that the out s
tered current fromJ1 would be the in scattered current int
J2, etc.

APPENDIX C: SELF-CONSISTENT CALCULATION OF
THE ELECTROSTATIC POTENTIAL

The quantum mechanical calculation of the charge
used in an iterative self-consistent solution of the elect
static potential which is the Hartree potential. We use
Newton-Raphson method with a semiclassical form for
Jacobian. We begin by discretizing Poisson’s equation

d

dz
e~z!

d

dz
f~z!1q@ND

1~z!2NA
2~z!2n~z!#50 ~C1!

to obtain

1

a2
~f i21e

22f i~e21e1!1f i11e
1!1q@NDi

1 2NAi
2 2ni #

50, ~C2!

where f i is the electrostatic potential at layeri ,
e15(e i1e i11)/2, e25(e i1e i21)/2, e i is the dielectric
function at layeri , NDi

1 is the ionized donor concentration a

layer i , NAi
2 is the ionized acceptor concentration at layeri ,

ni is electron density at layeri calculated quantum mechan
cally from Eq. ~18!, andq is the magnitude of the electro
charge. We have, so far, assumed complete ionization of
dopants, although it would not be difficult to include an io
ization model.

DefiningFi as the left hand side of Eq.~C2!, we solve

(
j

]Fi
m

]f j
mdf j

m1152Fi
m , ~C3!

where i and j are the layer indices andm is the iteration
index. The new value off is thenfm115fm1dfm11. For
the calculation of ]ni /]f j contained in the Jacobian
]Fi

m/]f j
m , the semi-classical form is used,

]ni
]f j

5d i , j
q

kBT
NcF 21/2S EFi

2Eci
1qf i

kBT
D ~C4!

after first finding the quasi-Fermi levelEFi
by solving

ni5NcF 1/2S EFi
2Eci

1qf i

kBT
D , ~C5!

whereni is the quantum charge calculated from Eq.~18!. In
Eqs.~C4! and~C5! Nc is the effective conduction band den
sity of states,F j is the Fermi-Dirac integral of orderj , and
Eci

is the energy of the conduction band edge at layeri ~not
including the electrostatic potential!.51 The quasi-Fermi lev-
els at the boundaries are fixed by the applied potential,
the electrostatic potential at the boundaries is fixed with
spect to the quasi-Fermi levels to ensure charge neutrali

The semiclassical Jacobian has worked well leading
converged quantum self-consistent solution,Fi

m50, in ap-
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proximately three to ten iterations. One of the reasons th
has worked so well is that our boundary conditions fill t
low notch states in the emitter lead in RTD simulations. T
is similar to the model of Onishiet al.,52 except that we
calculate the quantum states in the lead exactly and then
them according to the Fermi-Dirac factor of the lead as
scribed by Eqs.~58! and ~18!.
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